Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Anal Chem ; 94(15): 5909-5917, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1882715

ABSTRACT

SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid chromatography coupled to mass spectrometry has been widely used to characterize post-translational modifications in proteins, including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogeneous glycans at the intact protein level. Herein, we evaluated several online separation techniques: (1) C2 reverse-phase liquid chromatography (RPLC), (2) capillary zone electrophoresis (CZE), and (3) acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down mass spectrometry (MS). Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation and N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogeneous glycoproteins for facile comparison of biosimilars in quality control applications.


Subject(s)
Biosimilar Pharmaceuticals , COVID-19 , Chromatography, Liquid , Chromatography, Reverse-Phase/methods , Glycoproteins/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Polysaccharides/analysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
2.
Biomed Chromatogr ; 35(12): e5212, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1349236

ABSTRACT

Remdesivir (RDV) is the first antiviral drug, approved by the Food and Drug Administration, to treat severe acute respiratory syndrome coronavirus 2. RDV is a relatively new chemical entity, 'ester prodrug', with no reported stability profile. Due to the urgency of its use and thus fast production, it is important to develop a stability-indicating method for its assay. Chromatographic separation was carried out on a C18 column (250 × 4.6 mm, 5 µm) with dual detection: diode array at 240 nm and fluorescence at λex/em 245/390 nm. Isocratic elution of acetonitrile and distilled water (acidified with phosphoric acid, pH 4) in the ratio of 55:45 (v/v), respectively, was used. The linearity range using HPLC-diode array detection was 0.1-15 µg/mL, whereas that using fluorimetric detection was 0.05-15 µg/mL. As per the International Conference on Harmonization guidelines, RDV has been degraded by accelerated alkaline, acidic, neutral hydrolysis, oxidative, heat, and photolytic stress conditions. Possible degradation hypothesis of the parent molecule has been suggested and illustrated. The proposed methods have achieved selective determination of the intact drug with no peaks overlapping in all assumptions. Extensive degradation confirms threatened drug stability at thermal and basic hydrolytic stressing. The developed methods were fully validated and proved suitable for quality control routine analysis of RDV in raw material and pharmaceutical dosage forms.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Prodrugs/chemistry , Acetonitriles/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Drug Stability , Hot Temperature , Humans , Hydrolysis , Limit of Detection , Oxidation-Reduction , Photolysis
3.
Molecules ; 26(8)2021 Apr 07.
Article in English | MEDLINE | ID: covidwho-1302417

ABSTRACT

Two new ultra-high performance liquid chromatography (UHPLC) methods for analyzing 21 selected antivirals and their metabolites were optimized, including sample preparation step, LC separation conditions, and tandem mass spectrometry detection. Micro-solid phase extraction in pipette tips was used to extract antivirals from the biological material of Hanks balanced salt medium of pH 7.4 and 6.5. These media were used in experiments to evaluate the membrane transport of antiviral drugs. Challenging diversity of physicochemical properties was overcome using combined sorbent composed of C18 and ion exchange moiety, which finally allowed to cover the whole range of tested antivirals. For separation, reversed-phase (RP) chromatography and hydrophilic interaction liquid chromatography (HILIC), were optimized using extensive screening of stationary and mobile phase combinations. Optimized RP-UHPLC separation was carried out using BEH Shield RP18 stationary phase and gradient elution with 25 mmol/L formic acid in acetonitrile and in water. HILIC separation was accomplished with a Cortecs HILIC column and gradient elution with 25 mmol/L ammonium formate pH 3 and acetonitrile. Tandem mass spectrometry (MS/MS) conditions were optimized in both chromatographic modes, but obtained results revealed only a little difference in parameters of capillary voltage and cone voltage. While RP-UHPLC-MS/MS exhibited superior separation selectivity, HILIC-UHPLC-MS/MS has shown substantially higher sensitivity of two orders of magnitude for many compounds. Method validation results indicated that HILIC mode was more suitable for multianalyte methods. Despite better separation selectivity achieved in RP-UHPLC-MS/MS, the matrix effects were noticed while using both chromatographic modes leading to signal enhancement in RP and signal suppression in HILIC.


Subject(s)
Antiviral Agents/pharmacokinetics , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Solid Phase Microextraction , Tandem Mass Spectrometry , Antiviral Agents/chemistry , Drug Monitoring , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL